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Soliton self-frequency shift: Self-similar solutions and their stability
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Ultrashort pulse propagation in fibers is affected by intrapulse Raman scattering (IRS) which causes both a
linear frequency downshift and a quadratic displacement of the peak pulse, as functions of the propagation
distance. This effect has been known and treated by perturbation methods applied to the nonlinear Schrodinger
equation since the period of intense research on soliton propagation. Here, we find solutions of the model
equation using an accelerating self-similarity variable and study their stability. These solutions have Airy
function asymptotics which give them infinite energy. For small IRS, the algebraically decaying tail is negli-
gible and these solutions are a very good approximation of the profiles observed in the full equation simula-
tions. For strong IRS (but beyond the regime in which the evolution equation is valid for silica fibers), the
self-similar pulses have noticeable left tails exhibiting Airy oscillations. Whenever their truncated forms are
used as initial conditions of the full equation, they experience amplitude decay and show left tails that are
consistent with radiation escaping from the central pulse. These observations are interpreted as being the

effects of a continuum constitution of the infinite left tail.
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I. INTRODUCTION

Intrapulse Raman scattering is a nonlinear effect which
must be considered in pulse propagation in fibers whenever
the spectral width is sufficiently large that the material spec-
tral Raman gain allows energy transfer from the high fre-
quency to the low frequency components. The consequence
of this phenomenon for the propagation of solitons in fibers
is a continuous down-shift of the mean frequency of subpi-
cosecond pulses. The effect was first observed in 1986 by
Mitschke and Mollenauer [1], named as soliton self-
frequency shift and, as demonstrated by Gordon [2], may be
theoretically explained as a delayed Kerr response.

For spectral widths relatively small, the Raman gain spec-
trum may be approximately modeled by a linear function and
the dimensionless evolution equation reads [3,4]

o
igz+ Sdarr+ lglq =T{la]»)1q. (1)

where ¢ is related to the complex amplitude of the optical
field envelope by
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where A(z,7) is such that |A|* represents the optical power

and 7 is measured in a reference frame that moves with the

group velocity of the carrier frequency. The normalized Ra-

man parameter is T,=t./ 7y, A 1S the effective core area of

the fiber, k" is the group dispersion at the carrier frequency

wy, ¢ is the vacuum speed of light, n, is the Kerr coefficient

and 7, is a normalization time.

Straightforward application of an adiabatic perturbation

technique to the above perturbed nonlinear Schrodinger
(NLS) equation yields a frequency shift given by [2]

K|t
Awy(z) = 5.12|4 | *2,

fwhm

where g, stands for the full width at half maximum in real
units. The above result is in satisfactory agreement with the
experimentally observed self-frequency shift. The factor
fr shows that the effect can be very large for pulse widths
of a few tens of femtoseconds, however, it becomes negli-
gible for pulse widths of several tens of picoseconds. As the
group velocity is frequency dependent, this frequency shift
also changes the soliton velocity from its original value and
produces a temporal displacement of the pulses according to
2.56 trt;\f,hmzz. These results anticipate that self-similar accel-
erating pulses might exist, as we will investigate in section II
and which will generalize the procedure already applied to
Eq. (1) in [5]. The stability of these pulses will be investi-
gated using the Evans function method for the solutions to
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which the method is applicable. Then, the obtained self-
similar solutions will be used as input pulses of the simula-
tion of the full evolution equation in order to complete the
stability analysis. Finally, the conclusions are presented in
Sec. IV.

II. SELF-SIMILAR SOLUTIONS

The temporal pulse displacement proportional to z> sug-
gests the existence of a self-similar variable given by n=T
—4$Z*+bZ (with a and b constants), as for screening photo-
refractive  solitons [6]. Inserting the ansarz ¢(Z,T)
=explitZ, 7)]W(7), where both 6(Z, ) and W(z) are real,
into Eq. (1), we obtain

1
- 6,W- 19,]<b - gz)W+ E(W’ - O W) + W = 2T, W W'

. a ’ l ’
+1i b_EZ W +5(0,7,,W+20,,W)=0. (2)

Both real and imaginary parts should vanish. Multiplying the
imaginary part of the above equation by 2W and integrating
in 7, we obtain

a B(Z)

0,,=EZ—b+ —

where B(Z) is the integration constant. Another integration in
7 yields

d !’
0(Z.7) = (fZ—b)mE(z) +B(Z)f =,
2 W
where E(Z) is another integration constant. Using the above

result for #(Z, 7) in the equation for the real part, we obtain

’ 2 2
W’ + {—an—ZE’(Z) —2B’(Z)f dW_”’IZ + (gZ—b) - BW(/“Z)

+2W?—AT.WW' (W=0. (3)

Since W is not a function of Z, we assume B(Z)=B=const.
and impose that

B 2
_2E'(Z)+(Ez_b) =—D=const. (4)

These yield the following ordinary differential equation
(ODE) for W(7%)
W' +{—an—-D+2W? —=B*W*—4T.WW'}W=0. (5)

and integration of Eq. (4) in Z yields the following expres-
sion for 6

1 1 1 1
0Z,7n) = <5az - b) n+ E(D +b2)Z - ZbaZz + ﬂa2z3

+®(n), (6)

with W2®'(7)=B. Equation (5) admits accelerating solutions
(a#0) having W—0 and ®'(7)#% as p—o only for B
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=0 and for 7,#0. In turn, this implies that ®(7)=®
=const. Furthermore, the two parameters a and 7, may then
be replaced by a single parameter vy through the transforma-
tion

_7 _Y _ 14 3/4
W(77)—4TrP(§), §—4Tr7l, y=a"(4T1)",  (7)

from which results the following ODE
P"+[-C—y,+2P*-yPP']P=0, (8)

where C=D(4T,/y)? is an arbitrary parameter.

We are interested in pulse solutions to Eq. (8) which de-
scribe stationary accelerating solutions to the full evolution
equation. For such pulse solutions, the asymptotic behavior
in the tails should match to the behavior of the Airy functions
Ai(x) and Bi(x) since these form a basis for the solutions to
the linearization of

R"(x) - xR +2y R’ - ¥ R’R' =0, )
which is obtained by transforming Eq. (8) using
P()=R(x) with x="7+y23C. (10)

As x—+%, Ai(x) tends exponentially to zero while Bi(x)
grows exponentially. As x— —o0, both Ai(x) and Bi(x) have
algebraically decaying oscillations of the same amplitude but
differing in phase by 7/2, namely,

2
Ai(x) ~ 7 12(- x)‘l"‘sin(g(— x)¥%+ ZTT)

Bi(x) ~ 77‘”2(—)5)‘”4005(%(—x)3/2+ :{) (11)

Thus, as x— +o0, the pulse solutions R(x) should tend to the
form cAi(x), while as x— —c they should tend to any solu-
tion ¢;Ai(x)+c,Bi(x) to the Airy equation R"—xR=0.

Even though there is no analytical form for the pulse so-
lutions of Eq. (8), for small ¥ we may arrive to an approxi-
mate solution using a perturbation approach. Hence, let us
expand the solution P({) whose peak is located at {=(, in
powers of vy as

P()=G(&=8)+yP (D) + -+ . (12)

Inserting the above expansion into Eq. (8), the leading order
yields

P"-CP+2P=0,

for which the localized solitary solutions are P(?)
=G({-{y) =C sech[VC({-¢y)], with {={, being the (arbi-
trary) peak position. This sech solution is unsurprising since
the case 7,=0 and a=0 reduces the evolution Eq. (1) to the
NLS equation and our ansatz to its traveling solution. Then,
taking the terms O(7y) yields for P,({) the differential equa-
tion
P} +(-C+6GHP, =G+ G*G',
or, equivalently,
d*P,

e +(682-1)P,=C(CV?y+ &S - CS°T,
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FIG. 1. (a) Comparison of the numerical P({) for y=0.25 and P from Eq. (15) and a sech profile. (b) Pulse profiles R(x) for y=0.1, 0.2

and 0.4.

where S=sech & T=tanh¢ (13)

with é= \E(g —{,). Since the related homogeneous equation
is self-adjoint and its only bounded solutions are multiples of
G'({-{,), the condition that Eq. (13) has bounded solutions
is [Z.({G+G>*G")G'd{=0, which gives

C=V15/4 with ¢, arbitrary. (14)

The bounded solution to Eq. (13) may be obtained by the
method of reduction of order and is given by

P ST ! LS 1§2ST CSTI (S)
=c +—=(5-— +—= n(S),
T T e 4 5

which is an odd function if {,=0 and additionally can be
made to have P|({;)=0 through the choice c¢;=—(15)""2.
With these choices, correct to order O(vy), the pulse peak
location approximately coincides with {={,=0 and the peak
amplitude is P(0)=C.

Based on the above perturbation approach we expect that
for y<<1 there exists an accelerating pulse P({) given by

. — 1 1 1,
P() =P =NCS+ y| — —=ST+ —F={S - (ST
Q=P =1 y( 25T e8¢

+ gST ln(S)), (15)

where S and T are the above functions with {,=0. Figure
1(a) shows ﬁ({) as given by Eq. (15) for y=0.25. It is inter-
esting to verify that no oscillations are predicted by Eq. (15),
even though they are associated with the Airy functions for
x<<0. Thus, we anticipate that, for small vy, the pulse solution
to Eq. (8) is well localized in the positive x semiaxis (that is,
in {>-C/ ), so that the tail decay is exponential like Bi(x)
(x>0) to the left and like Ai(x) to the right.

The pulse solutions to Eq. (8) can also be numerically
determined. In order to do so, we devise a shooting method
which starts by using location estimates from G({). There-
fore, we choose a suitably small value € and use the values
{;=—C"?In(2VC/€) and {,=C""?1In(2JC/€) as first esti-

mates for the locations at which P({;)=€ and P({,)=e€. Then,
from {={, we integrate Eq. (8) backward with the following
initial conditions:

P(§2) =R(xy) = cAi(x,) = €,

P'(£) = ¥'""R (x)) = cy'PAi' (xy),
where
X =y +v2C,

until we find a minimum for P2+C~'(P")? at some {={;
~/(,. Then ¢{, is adjusted in order to minimize P>
+C'(P")? until it becomes as small as € (that we have

chosen as 5 X 107°) for some Z; <0. A similar procedure may
be applied to integrate forward from £ in the left tail and
using the function Bi(x). Following the above shooting
method, we were able to find pulse solutions for which the
two integrations agree, for y up to approximately 0.25 (Fig.
1). The peak amplitude is very close to C>=(15/4)"* and

the profile P(¢) is also very close to P({) of Eq. (15) as
determined using the perturbation approach [Fig. 1(a)]. The
later figure also compares the numerical profile with a sech
profile which shows clearly the asymmetry that grows as y
grows. As expected, these pulses are well within the region
of positive x and the decay to the right and left tails are
exponential.

For y>0.25, it is not possible to find pulses for which
P2+ CY(P")? becomes as small as €~ 5 X 107°. This is un-
surprising, since in this case we have R(0)~2 X 1073, which
implies that the left tail enters the region of negative x (i.e.,
for {<—C/7y) where the Airy functions become algebraically
decaying and oscillatory. However, if we do not require P>
+C7'(P")? to reach €, the shooting routine finds real solu-
tions which decay algebraically to the left tail and exhibit
observable Airy oscillations for x<<0 [see profile for y=0.4
in Fig. 1(b)]. As v increases, the pulse peak becomes closer
to x=0, the pulse is more asymmetric and the oscillations are
larger in amplitude [Fig. 1(b)].
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FIG. 2. Peak amplitude (represented by + and left y axis) and
full width at half maximum (represented by X and right y axis) as
function of y. VC (left y axis) and 1.76/\C (right y axis) are rep-
resented by the horizontal line.

We have analyzed the dependence of the amplitude and
width of the profiles for which both tails decrease exponen-
tially, i.e., solutions whose left tail starts to decay algebra-
ically whenever is already very small. Figure 2 shows the
peak amplitude P, and the full width at half maximum (g,
as a furEtion of y. There, small deviations of the peak value
from VC and £y from 1.76/ \C are observable. Moreover,
both increase with 7 so that they do not follow the prediction
Crwnm=1.76/ Py which is characteristic of sech profiles.

Note that the strength of the intrapulse Raman effect is
given by y which may be written as y=4{nmt:/ trwhm. Since
the increase of {p,m 1S negligible, the effect increases with
the magnitude of 7, and decreases with temporal width of
pulses (increasing with spectral width). Apart from the asym-
metry and the Airy tails arising for larger 7, the results ob-
tained with self-similar solutions do not differ considerably
from the results obtained with the perturbation about the
NLS. The dependences of physical acceleration on tg,p,/ 1, as
obtained by the two approaches are represented in Fig. 3.
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e, perturbation results -
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FIG. 3. Actual acceleration versus actual full width at half maxi-
mum, normalized by [k”|>/£> and 1,, respectively. Points are obtained
using the self-similar solution and the line represents the perturba-
tion result.
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FIG. 4. Pulse profile P({) with two humps for y=0.053.

Our shooting procedure permits us to find multihumped
profiles, as well. They exist in the same range of 7y as the
single-humped profiles and are centered around {=0. They
arise due to the nonautonomous character of Eq. (8). Figure
4 represents one example of these profiles that, in this case,
has two peaks. These multihumped solutions do not propa-
gate indefinitely without peak separation, however, the real
distances during which they maintain their form may reach
tens of meters, such that, they may be the precursors of the
bound soliton pairs recently observed in photonic crystal fi-
bers [7,8] as was further studied in [9].

II1. STABILITY ANALYSIS
The stability of the accelerated solutions may be studied
by the spectrum of the stability eigenvalue problem. To ob-

tain it, we write a solution composed of the equilibrium P()
plus a small complex perturbation w(Z, {), given by

9(Z.7) = T explioZ. OJP() + w(Z.0).

Introducing this solution into the evolution Eq. (1) and lin-
earizing, we obtain

Iql
q1

FIG. 5. Evolution along Z of self-similar profile for y=0.2 and
unitary peak amplitude.
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2i Y2 * 2 3 pp
lWZI+W§£_2P (wetwp) = v+ C—-4P + 2PP w
2 7 I *
+ (ZP -5 PP )w =0. (16)

where Z'=(y/4T,)*Z. The stability eigenvalue problem is
obtained from the above equation by considering that w de-

1 C 3
- Ye-Zv2p2-ppr Y

P*d;
2% 27 2 4 4

—P+ %/PP’ + %Pzag

In the vy range such that the profiles decay exponentially
in both tails, which was numerically observed for y=0.25,
for £ in the tails of P({) the eigenvalue problem is equivalent
to a decoupled pair of Airy equations. Following the argu-
ments used in [6], we have applied a generalized Evans func-
tion method with Airy function asymptotics. We have not
found any unstable eigenvalues using this methodology. For
v=0.25, the asymptotics of Eq. (17) are not really known
since the decaying of the left tail of P is algebraic and as {
— —o0, there are other dominant terms than the Airy equation
terms. In this range, it is not possible to apply the Evans
function method.

The stability of the accelerating self-similar profiles was
also evaluated by numerical simulation of the full evolution
Eq. (1). Using the single-humped pulses as input, we ob-
tained steady propagation with the expected acceleration
(Fig. 5). However, the simulations up to Z=300 of a pulse
with unit initial peak amplitude show that for y=0.25 the
peak amplitude decays with the propagation distance. This
peak amplitude decay is plotted in Fig. 6. Since we are
propagating pulses such that g,,,,=W.«=1, the real distance
is given by z=0.0037 Z/%* (m) (we have used #,=3 fs and

¥=02 ——
1.001

peak amplitude

0.999

0.998

0 100 200 300
V4

FIG. 6. Evolution along Z of peak amplitude of self-similar
profiles.
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pends exponentially upon Z' in the form w(Z’,{)=u({)e™*
+0*(0)e”™ %' Then the eigenvalue problem reads

)2,

where the operator L is given by

(17)

p2-Yppr - szag
4 4
1 C 3
O+ Z§+ S _op2 ppry szag
2 2 2 4 4

|k"|=20 ps?/km). Thus, Z=300 corresponds to a distance of
27.8 m for y=0.2 and to 12.3 m for y=0.3.

These simulations of the partial differential equation
(PDE) also show that the profiles with Airy oscillations that
we have obtained do not maintain their shape during propa-
gation. Even though they evolve to pulses whose central part
is identical to the input central part, they show a left tail
whose modulus has no oscillations, although decays at the
same rate as the Airy oscillations (Fig. 7). Although, the
self-similar solution is an exact solution, the oscillatory Airy
tails do not survive under the PDE numerical simulation,
despite, they have been reported in a previous work [5]. In
fact, the oscillations that were observed by [5] in their nu-
merical simulation of the PDE may be due to their shorter
propagation distance or even to reflection of the escaping
radiation on the integration window limits. One fact that was
not mentioned before is that the solutions having asymptotics
like the Airy functions for negative x have infinite energy, so
they are not allowed as physical solutions. Hence, the trun-
cated self-similar solutions that are numerically used as input
should adjust during propagation. The adjustment seems to

1.2 T T T T r . ; . .
input
output --------
0.8 | |
o 1.
04 |
0 bevvuvy P ¥ ; I  S——— L hS
-40 20 0 20 10

FIG. 7. Input (self-similar profile) and output for the PDE simu-
lations corresponding to y=0.49 (7,=0.17 for unitary amplitudes).
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require peak amplitude decay as is observed for y=0.25 and
Z up to 300, which suggests that our numerical propagating
solitary waves behave like radiatively decaying solitons
[10,11]. Indeed, it seems that energy is continuously and
slowly escaping from the central pulse in order to complete
what is in fault in the left tail. This also means that not all the
initial energy is following the linear decrease in frequency of
the accelerated pulse but instead stays as a higher frequency
wing of the spectrum. Although a more accurate analysis
should be performed to fully understand the dynamics of this
small tail, its (—x)~"* decay rate suggests that it is of the
form P({) > |Bi+iAil|. Actually, this type of solution has also
been found in the context of a quantum wave equation for a
charged particle under the potential of a constant electric
field [12], a problem that shows some analogy with our sta-
bility problem (17) for small P.

Nevertheless, our simulations also show that, for vy
=0.25, the self-similar solutions are very much identical to
the ones that propagate numerically so, probably, identical to
the ones that propagate physically. Recall that for 7y below
0.25, we have obtained steadily accelerating propagation for
Z distances as large as 1000. For the particular value 7y
=0.2, this Z corresponds to a real distance of 92.5 m. Note
that for small vy, we surely have profiles that decay exponen-
tially to the left tail, since we were able to obtain them by
integration from the left using function Bi. Moreover, the
oscillatory Airy tail should also be present in these profiles
from x=0 to the left, however it is negligibly small for that
the numerical truncation should not imply any observable
adjustment. We have also propagated initial profiles given by
1.1P(&) for which we observe that the pulse adjusts its shape
and peak amplitude until it attains a steady propagation.

It is worthwhile to say that an identical self-similar vari-
able was already used to describe the self-bending photore-
fractive solitons [6]. For them, the asymptotics were also of
the Airy kind, however, the obtained profiles were away from
the negative Airy x axis and well situated in the positive x
region. Hence, whenever the tail entered the negative x re-
gion, it is already negligibly small, so that, every self-similar
solution was a good approximation of the physical solution.

Fortunately, the limiting vy for which the self-similar so-
lutions propagate steadily in the full equation almost coin-
cides with the maximum value of 7y such that Eq. (1) is a
valid model for ordinary silica fibers. In fact, for silica fibers

PHYSICAL REVIEW E 81, 046604 (2010)

t.=3 fs [4] and the Eq. (1) describes the intrapulse Raman
scattering for spectral widths less than the silica Raman gain
peak at 13 THz, which imposes the bounds 7 =65 fs and
Y"*=0.235. Hence, in the range of temporal widths for
which our model is valid for silica fibers, the solutions are
quite symmetrical, have very small Airy tails and propagate

steadily.

IV. CONCLUSIONS

We have obtained self-similar accelerated solutions of the
NLS plus intrapulse Raman scattering. These self-similar so-
lutions have Airy function asymptotics which impose them
infinite energy. Nevertheless, for relatively large pulses
(trwnm =76 fs), whose range almost coincides with the range
of pulse widths for which this model is valid for silica fibers,
these self-similar solutions are a very good approximation of
the pulse profiles that propagate in the PDE simulator. They
are well located in the positive Airy x semiaxis and have
negligible Airy tails. For stronger IRS, which may be real-
ized by shorter pulses or by larger Raman coefficient, the
self-similar solutions are asymmetric and show an Airy left
tail with pronounced oscillations. However, these oscillations
do not survive in the PDE simulation. Moreover, we have
observed that above approximately the same IRS strength
(y~0.25) as the profiles start to show noticeable Airy tails
(recall that the Airy tail amplitude is greater than 10~* for
v=0.25), they propagate in the PDE simulator experiencing
amplitude decay, which we interpreted as energy transfer-
ence from the pulse to the incomplete tail. The escape of
radiation from the central pulse to the left, in consistency
with Airy function algebraic asymptotics, would also explain
the observed form of the left tail. Hence, we consider that the
accelerated self-similar solution is a very good approxima-
tion of the physical pulses propagating in silica fibers, how-
ever, a full analysis that includes radiation loss should be
performed to recover the solutions that we have found in the
simulation of the PDE, especially for large IRS.
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